The standard and expectation of responsibilities will remain the same as described in the corporate Manual Handling Policy.

Introduction

Bariatric people handling is in principle no different from all other person handling activity. However due to the size, weight or body dynamics of a person, special consideration may need to be given to aspects of the manual handling practise.

An individual is clinically described as ‘Bariatric’ when their Body Mass Index (BMI) score is greater than 40 (consideration will also need to be given to the service user’s weight, hip/waist circumference and height). This includes any service user whose size, weight or body dynamics exceed the safe working loads or capacity of the working equipment, care capabilities provided and who may require exceptional staffing, equipment or environmental considerations.

Planning, Assessment and Management of Bariatric clients

Planning:

Planning for a service user who may become or is already classified as clinically obese is very important. Managers will need to take into consideration key risk factors for both the service user and staff.

- Space requirements –
- Floor surfaces –
- Accommodation –
- Safe working loads of equipment –
- How to evacuate in an emergency –
- Staffing requirements –
- Personal care provided –
- Weight of the equipment needed –
- Weight of the Service user –

Assessment:

Under the Management of Health & Safety at Work Regulations 1999 and the Manual Handling Operations Regulations 1992 (MHOR revised 2004) the employer has a duty to manage risk associated with manual handling. This includes undertaking a suitable and sufficient risk assessment:
This assessment must be completed for the person who requires assistance to be moved and where there is risk of injury to staff from manual handling.

Risk assessment can be broken down into 4 key process areas when assessing a Bariatric client.

- **T- Task** – The posture of the staff member/handler should be considered from the beginning to the end of the task. Consider issues such as static movements, repetitive tasks, distance of any handling.

- **I- Individual** – Ability, height, weight, physical fitness of both handler/service users should be considered.

- **L- Load/person** – Service users should be encouraged to assist in their own transfers and appropriate equipment with suitable Safe working load used. The lifting of all or most of the weight of a person should only be necessary in exceptional circumstances.

- **E- Environment** – Work areas should allow sufficient room for manoeuvre. They should also provide sufficient light, heat and safety for staff to complete tasks.

Any moving and handling of bariatric service users should be initially assessed by completion of a person handling risk assessment (see pro-forma). Any additional specialist moving and handling advice or complex assessment should be completed in consultation with the departmental moving and handling trainer/advisor.

Assessment of weight

Having an accurate weight of the person is an essential part of the risk assessment process. Managers shall ensure that suitable arrangements are in place so that the person can be weighed in a sensitive and dignified manner.

Once an accurate record of weight has been determined a simple method of Body Mass (BMI) identification can be conducted:

<table>
<thead>
<tr>
<th>Weight in Kilograms</th>
<th>Height² in Metres</th>
</tr>
</thead>
</table>

E.g. A service user is **1.8 metres** in height and weighs **171 kgs**

First multiply the height by itself:

\[1.8 \times 1.8 = 3.24\]

Then divide the weight by this number:

\[171 / 3.24 = 52\]

The persons BMI score is 52. They are morbidly obese.
Body types
Individual people come in all shapes and sizes, according to their height and weight distribution. Bariatric weight distributions can be categorised into four main bariatric body types:

- **Anasarca** Severe generalized oedema

- **Apple**
 Ascites Distribution: weight carried high; abdomen may be rigid
 Apple Pannus Distribution: weight carried high; abdomen mobile, hangs to the floor (known as apron); legs could be normal.
 Apple Android Distribution: the fat is stored around the waist area

- **Pear**
 Pear Abducted Distribution: weight carried below waist: significant tissue between Knees.
 Pear Adducted Distribution: weight carried below waist: tissue bulk on outside of thighs.
 Pear Gynoid Distribution: the fat is stored around the hip area.

- **Bulbous Gluteal Region** - Excessive buttock tissues creating a protruding shelf.

Fat distribution differs in men and women, men being predominately apple shaped and women predominantly pear shaped.

In the apple shaped population, shoulders, face, arms, neck, chest and the upper portion of the abdomen are often distended. The neck may appear compressed with some protrusion of the chest because the stomach, hips, thighs and legs remain thin. In android apple shaped people the fat is more prominent around the waist area. In apple shaped obesity the organs affected are the heart, liver, kidneys and lungs.

Typical fat distribution in men and women
Management: (Equipment)

(Chairs, Wheelchairs, Walking aids, Hoists/Slings & other work equipment)

Appropriate equipment for dealing with a Bariatric service user will need to be provided in order to reduce the risk of injury to staff and the individual being moved. Just because a patient is classified as bariatric, he or she still may be within the existing equipment’s SWL. However, as is often the case, the service user’s actual weight distribution can mean that he or she physically cannot fit on a bed/into a chair due to the restricted width. This should be a key consideration when identifying equipment needs, as sufficient space is required to ensure that the patient can be safely repositioned independently or with the assistance of staff.

Managers should ensure that there are processes in place for checking equipment regularly and ensure that there is a documented maintenance programme. Equipment that is used to lift bariatric service users must be suitable for the task and have a Safe Working load (SWL) limit greater than the weight of the individual.

Chairs
Most bariatric patients sleep in chairs because they cannot lie flat or raise their legs into bed. Therefore, in preference to a single motor a dual motor chair should be provided. This will enable the patient to change position. The chair also requires pressure-relieving properties so as to obviate the need for a cushion.

Consideration must be given to:

- The body dynamics of the patient
- Where the chair is being used
- Environmental constraints
- The necessity for dual motoring
- Height and depth of the chair
- Pressure relieving properties
- Number of persons required to install equipment

Wheelchairs
Some wheelchairs are too heavy and wide for one person to push. If the wheelchair is self propelled, the user would need good upper body strength to move the wheelchair physically. Such wheelchairs require large doorways and a large turning circle, not always achievable in a standard home/centre or office building. Powered wheelchairs raise similar considerations to those which are self propelling but often are much heavier and raise more problems with manoeuvrability within the work environment. Considerations should be made on how the individual will gain access to areas of the workplace.

Walking Aids
Walking aids can be cumbersome and difficult to manoeuvre through doorways. Without a tray; users find them difficult when carrying other equipment. The size of the walking aid needs to accommodate the
individual’s body dynamics otherwise the aid may force the user to walk at a difficult angle.

Hoists/Slings
There are 3 main types of hoist that can be used for bariatric clients. Electric mobile hoists, hydraulic mobile hoists and gantry hoists. There are a variety of sizes of each type of hoist, when deciding on the appropriate equipment it is best practice to prescribe the smallest and lightest possible after taking into account: weight of the service user and heights of lifting surfaces. Larger hoists will require more space to manoeuvre and will make the load heavier (note: Hydraulic hoists should only be used as a short term measure if other more suitable hoists are not available). Due to the nature of a bariatric service users condition a hoist and sling must be selected with the appropriate Safe Working Load (SWL) to ensure compatibility and longevity.

It is important to complete a thorough risk assessment when sourcing a hoist and make sure control measures are in place to reduce the risks of using the equipment.

- Staff/employees must be trained and able to use the equipment safely.
- Equipment used to lift persons must undergo a thorough examination by a competent person at least once every six months (Lifting Operations and Lifting Equipment Regulations (LOLER))
- Regular inspection by staff using the hoist must be recorded.

Slings like hoists should be suitably assessed to ensure compatibility with the equipment and the service user. Key considerations will be:

- The sling is compatible with the hoist, i.e. it should have the correct attachments.
- What transfers will be carried out with it
- Slings are visually inspected before use and removed from service if defects are found.
- Slings should be laundered according to manufacturer’s instructions

Commodes
Commodes will be designed to take up to a certain safe working load. This may not be marked on the commode itself and may only be detailed in the operating instructions. The patient’s weight aside another factor to consider is the patient’s dimensions –

- Is the commode wide enough for the patient?
- The safe working load of the commode must not be exceeded otherwise it may fail.

The maintenance arrangements for the commodes must also be considered. I.e. is it well maintained or is it likely to have been years since it was serviced? All these points will be considered at the assessment stage for the bariatric service user.
Management: Staff responsibility
With the person included in discussion and with their consent Risk Assessment and Care Planning should include:

- The person’s level of mobility should be maintained at all times with equipment and aids currently being used.
- Due consideration must be made of any co-morbidities.
- Manual Handling activities where guidance or general assistance is required in relation to activities of daily living, mobilisation and bed mobility.
- The number of staff required for activities undertaken with the person, and the roles they will take.
- Plan in the event of an incident such as cardiac arrest, building evacuation, or if fallen.
- The assessment and plan should be reviewed on a daily basis or at specified times, or if the condition of the person deteriorates or changes.

Any concerns raised following the Risk Assessment and Care Planning should be documented and advice sought from the appropriate advisor.

Management: Training

In order for staff to be competent to carry out their duties they will be required to undertake comprehensive manual handling training. This training will need to include consideration of moving and handling equipment such as hoists and ergonomically designed equipment associated with bariatric clients. All training should be completed at least annually and be based on a clear risk assessment approach (assessment of needs).

Management: Emergency situations

The following considerations will need to be made if the service user is admitted to hospital or requires transportation to hospital. How will the individual get to the care setting? Are there any risks that need to be managed? Is the ambulance service aware of the individuals known or suspected weight/dimensions? Is there an optimal entrance point to the hospital that should be used? i.e.

- avoiding slopes
- uneven flooring
- damaged pavements/walkways
- reducing distance to final destination time of day for admission – busy corridors, staff availability
- size of doors
- condition of any elevators to be used and their Safe Working Load must not be exceeded
- sufficient width/height for access to elevator
- size of gaps potentially allowing trapping of equipment
• Patient’s ability – can they walk to the ward? Will they be transferred from the entrance on a wheelchair/trolley, etc? How many staff will be required? Are they council staff, porters or ambulance staff? Again, is the equipment appropriate for the patient? (Safe Working Load/dimensions)